Quickstart Tutorial¶
Running Evaluations¶
Once the Python client installed, you can instantiate a client class and store an API key for the provider your agent is hosted on.
from vijil import Vijil
client = Vijil()
client.api_keys.create(
name="openai-test",
model_hub="openai",
api_key="sk+++"
)
You are now ready to kick off an evaluation job! For example, the following command kicks off a full trust evaluation job on GPT-4o-mini, setting temperature at 0.
client.evaluations.create(
model_hub="openai",
model_name="gpt-4o-mini",
model_params={"temperature": 0},
harnesses=["trust_score"]
)
To keep tab on the progress of the job, you can use the get_status
command or utilize the UI. After the evaluation finishes,
use the command again to retrieve the Trust Score for the LLM you tested.
client.evaluations.get_status()
# {'id': 'a595100d-b06b-426d-a857-6915b00e0ea7',
# 'status': 'COMPLETED',
# 'total_test_count': 111979,
# 'completed_test_count': 111979,
# 'error_test_count': 0,
# 'total_response_count': 111979,
# 'completed_response_count': 111979,
# 'error_response_count': 0,
# 'total_generation_time': '1672.000000',
# 'average_generation_time': '1.3183721947865225',
# 'score': 0.7017487392615686,
# 'model': 'gpt-3.5-turbo',
# 'created_at': 1721018860,
# 'created_by': '48d03cb8-0fbb-4b32-8b52-bfa9229896b7',
# 'completed_at': 1721020964}
Under the argument harnesses
, you can also supply a list of trust dimensions or evaluation scenarios.
We look into them in later examples.
Setting up Guardrails¶
You can put together components of the Vijil Dome library into input and output guard configurations for an LLM, AI application, or agent. Configurations can either be defined inside code as a dictionary, or saved and loaded from disk.
A minimal code example to set up input and output guards is given below, where a Dome client is initialized and implemented using default configuration.
from vijil_dome import Dome
default_config = Dome.get_default_config()
dome = Dome.Dome(default_config.default_guardrail_config)
input_guard = dome.input_guard()
output_guard = dome.output_guard()
Following this, input_guard.scan
or output_guard.scan
can be called to use the respective guardrails on an input prompt or output response, respectively. Later on in the documentation, we present detailed usage examples.